Longitudinal data analysis: challenges and prospects in public health settings

Max Petzold

Nordic School of Public Health & Karolinska Institute
Feb 2006

Training Course in Reproductive Health/ Sexual Health Research Geneva 2006

Classical clinical examples

Pharmacokinetics - a substans in Nexium

WHO rectal Artesmisinins

Haemoglobin levels after antimalarials, Tanzania

Specific characteristics

 Repeated measurements on several objects (individuals, families, villages)

 Normally the objects are followed over time, e.g. pharmacokinetics, measurements of performance, baseline/follow up.

Separate intra- and inter object variances

Longitudinal analysis

- It is a matter of correctness and richness

Correctness

uncorrelated and normally distributed residuals

Don't forget model diagnostics!

Richness

- to make inference about the individual as well as the group

Computer skills

But, repeated measurements on individuals

Now increasing with age within an individual

Separate individual from group effect

Computer skills

BRAC

 Both classical longitudinal studies and pre/post control group designs

Targeted intervention for the ultra-poor: does it make any difference in their health-seeking behaviour?

Syed Masud Ahmed, Max Petzold, Zarina Nahar Kabir, Göran Tomson

Table: Proportion seeking 'formal allopathic' care

	Intervention	Control	Estimated	
			intervention effect	
HHs seeking 'formal				
allopathic' care ^a (15 days				
recall)				
Baseline (2002)	22.7	25.0		
Post intervention (2004)	38.7	31.8	9.20	

Intervention effect: (38.7-22.7) - (31.8-25.0) = 9.20

But how to calculate CIs and control for confounding?

	Intervention	Control	Estimated	95% CI	p value
			intervention effect		
HHs seeking 'formal					
allopathic' care ^a (15 days					
recall)					
Baseline (2002)	22.7	25.0			
Post intervention (2004)	38.7	31.8	9.20	4.25 - 14.18	< 0.001

- Utilize effect modification / interaction in a regression
- Add confounders, it is regression
- Observe the dependency over time!
- Difficulties when having binary data

Nutrition – Farhana Haseen

- Design: Pre/post intervention control group design
- Measured on family level
- Energy intake as outcome
- Did the intervention make a difference?
- Other covariates (confounders)?

Energy intake related to sex?

- Phase: 0=Baseline, 1=Follow up
- Stup: 0=Control, 1=Intervention
- Interventiontime: Interaction Phase*Stup
- Sex: 0=Female, 1=Male

ene_p_	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
phase	25.9684	65.70378	0.40	0.693	-102.8086	154.7454
stup	12.70908	67.54684	0.19	0.851	-119.6803	145.0985
interventi~t	362.267	92.06088	3.94	0.000	181.831	542.703
sex_	25.67868	50.29746	0.51	0.610	-72.90254	124.2599
cons	1671.512	134.0944	12.47	0.000	1408.692	1934.333

ene_p_	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
phase stup interventi~t sex_ _cons	25.9684 12.70908 362.267 25.67868 1671.512	65.70378 67.54684 92.06088 50.29746 134.0944	0.40 0.19 3.94 0.51 12.47	0.693 0.851 0.000 0.610 0.000	-102.8086 -119.6803 181.831 -72.90254 1408.692	154.7454 145.0985 542.703 124.2599 1934.333
						 ntervall

ene_p_	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
phase	27.59011	64.86322	0.43	0.671	-99.53946	154.7197
stup	5.718676	67.27671	0.09	0.932	-126.1412	137.5786
interventi~t	505.1664	104.5445	4.83	0.000	300.263	710.0699
sex_	-48.51439	57.13399	-0.85	0.396	-160.4949	63.46617
sexint	-306.7489	110.9452	-2.76	0.006	-524.1975	-89.30039
_cons	1790.904	140.6727	12.73	0.000	1515.191	2066.617

Data collection

- If process, how to measure and how to model process between measurements?
- When did the event stop? Recurrent events/episodes, how to count? Varying severeness
- Recall bias
- Varying covariates (e.g. education)

Data organisation

- If dates, give start date and date for measurement/survey
- Give all covariates, also shifting
- Wide or long format? Wide is sparse, but long is what we need. Reshape. Use numbered variable names. Be consequent.

Remember

- both a challenge and a richness