P53, HPV and Cervical Cancer

Xin LU Ob & Gyn Hospital Fudan University, China

Tutor : Dr. Anis Feki University of Geneva

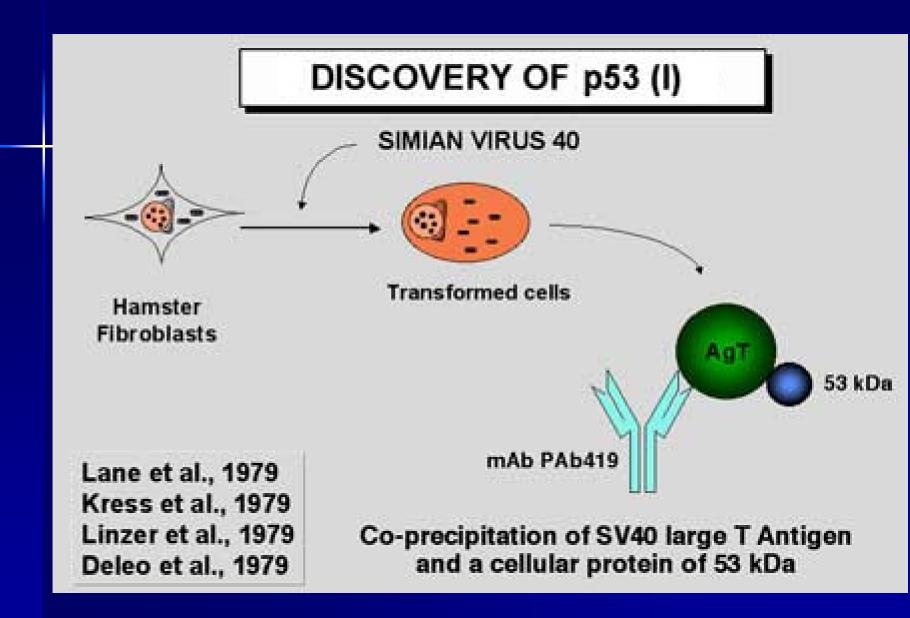
WHO/GFMER/IAMANEH Postgraduate Training Course in Reproductive Health Geneva 2004

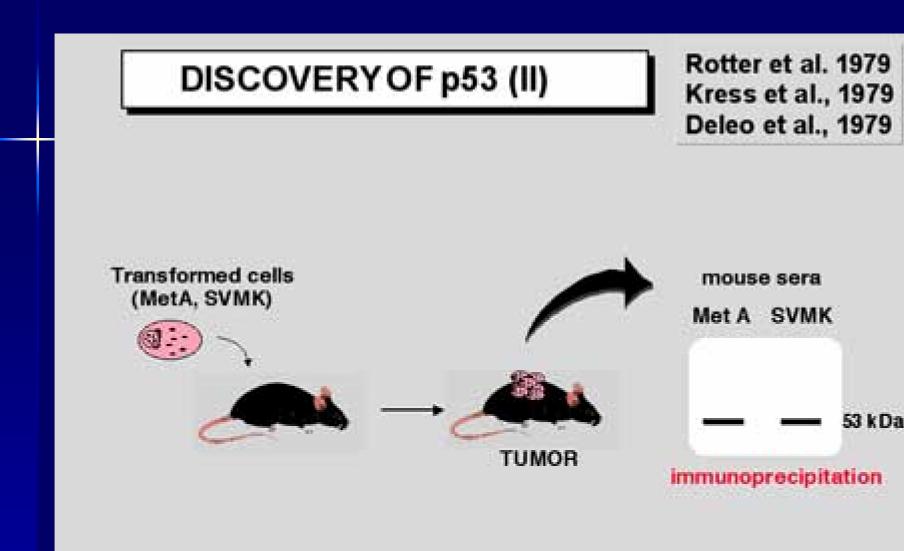
Background

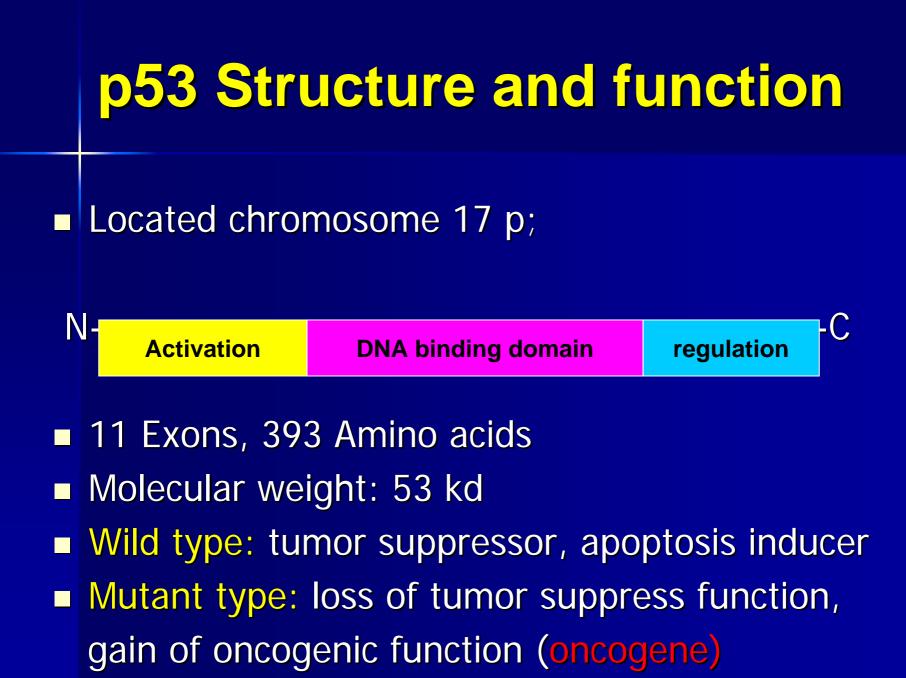
Cervical cancer risk factors
 Tumor suppressor gene p53
 Interaction between HPV and p53
 Prognostic factors of cervical cancer

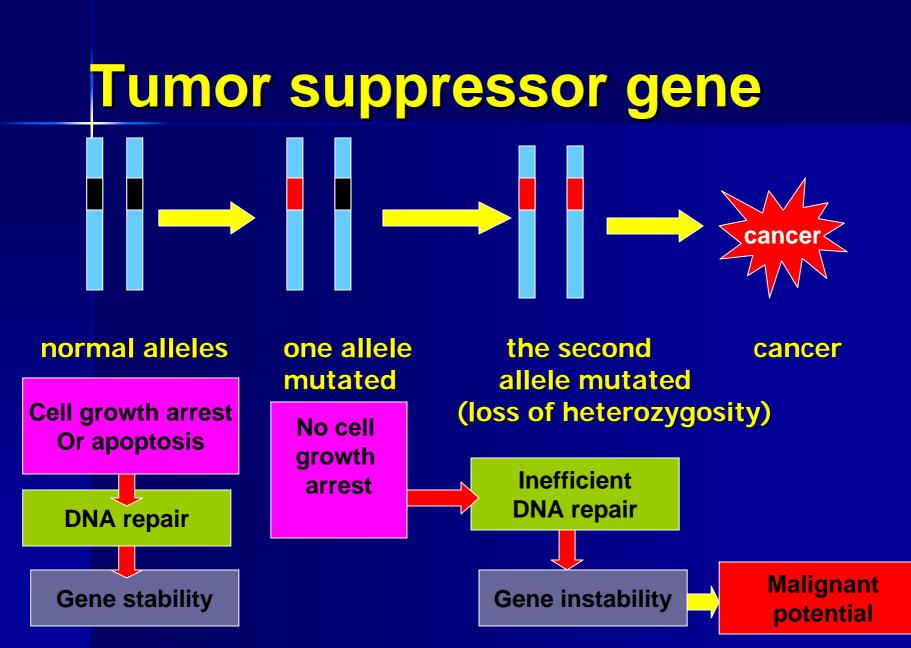
Cervical Cancer

- Worldwide about 500 000 women acquire cervical cancer annually.
- 75%-80% are from developing countries.
- Cervical cancer has leading mortality rate in the world, every year around 300 000 women die of this disease.

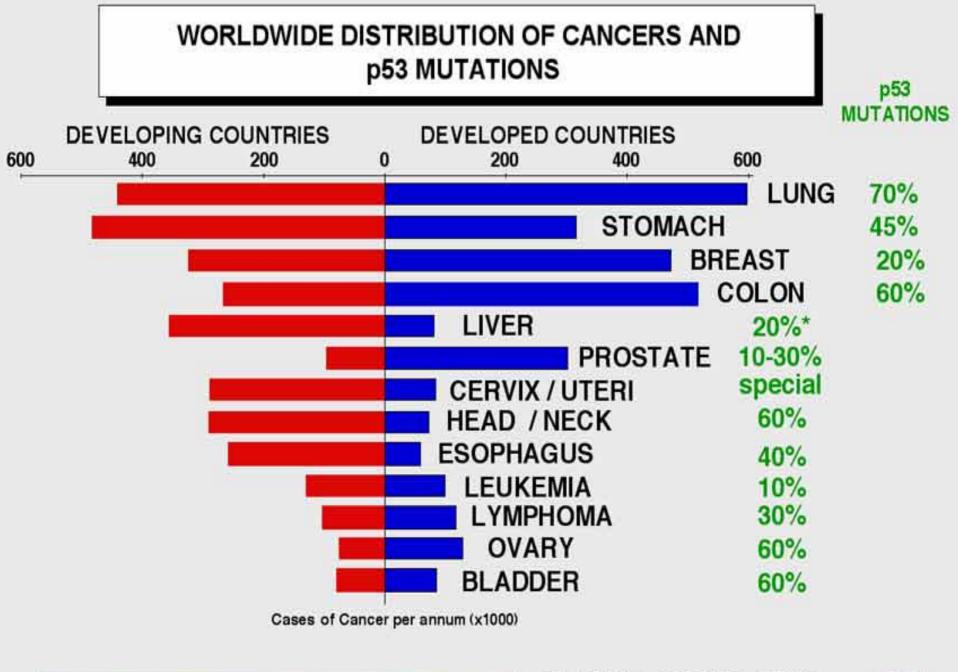

Risk Factors of Cervical Cancer


- HPV infection
- Multiple sex partners
- Smoking
- Oral contraceptives
- Family history
- Molecular genetic factors: p53


What is p53?


Discovery of tumor suppressor gene p53

- Structure and function
- Important transcription factor



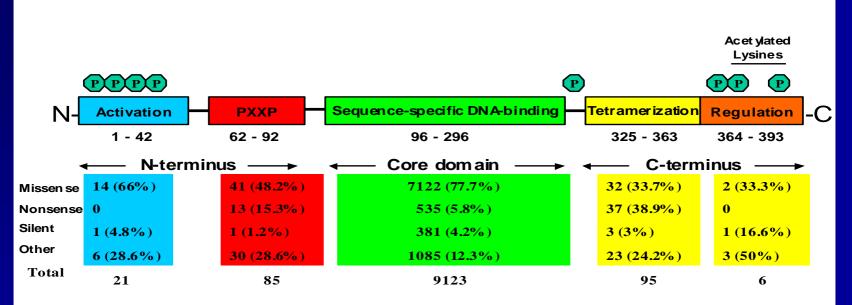
P53 in Human Cancer

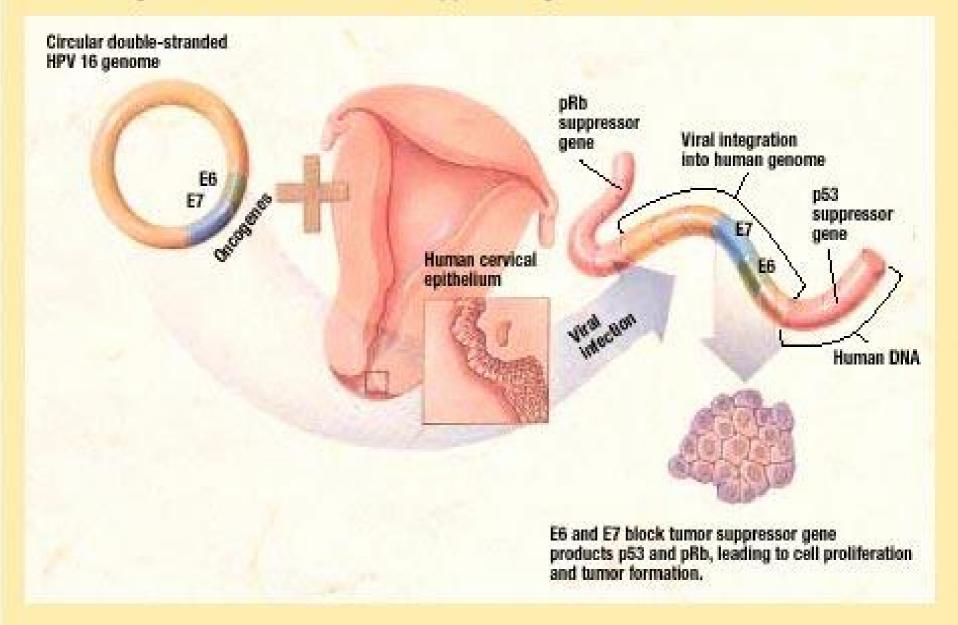
The first p53 gene mutation in human cancer was described by Baker in 1989.

It is estimated that p53 mutations are the most frequent genetic events in human cancers, accounting for more than 50% of the human cancers.

NON MELANOMA SKIN 80%

Anatomy of p53 Mutations




Fig. 1: Anatomy of p53 and the mutations in its coding sequence. p53 is a protein (393 amino acids) with the typical structure of a transcription factor: transcriptional regulatory region in the N-terminus, digomerization domain and regulatory regions in the C-terminus, central DNA binding domain that binds to consensus DNA motifs and provides the essential function for regulation of gene activation or repression. It is interesting to note that most known mutations in cancer affect the DNA binding domain. As you can see 90% of them are located in the central DNA binding domain. This results are based on the 10.000 mutations from the ARC database 1999.

HPV and p53

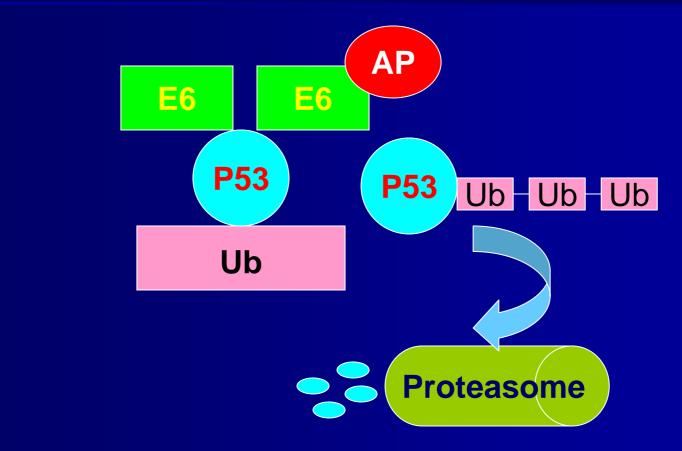

Correlation ?

FIGURE 2

Viral oncogenes and cellular tumor suppressor genes in cervical cancer

Degradation of p53 by E6

E6-AP :E6 associated protein Ub: Ubiquitin

Prognostic Factors

- Tumor histologic type
- Low grade differentiation
- Parametrial infiltration
- Lymph node metastases
- HPV
- P53 ?

Objectives

- To analyse data about of p53 mutation LOH of p53 and p53 polymorphism in cervical cancer
- To investigate the correlation of p53 mutation and HPV infection in cervical cancer
- To evaluate whether p53 can be a prognostic factor in this malignancy

Methodology

- Electronic search, MEDLINE from 1989 to March 2004.
- World Health Organization (WHO)
- International Agency for Research on Cancer (IARC): p53 database

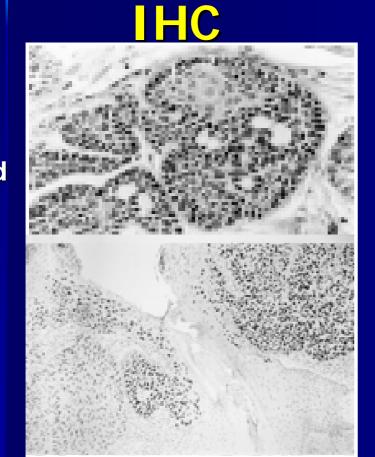
Key Words (MeSH):

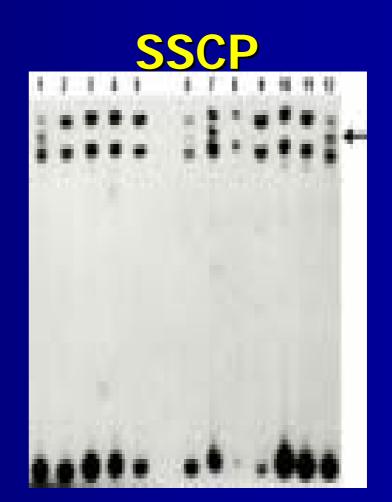
Cervical cancer/carcinoma, p53 mutation, HPV, LOH, p53 polymorphism

Exclusion Criteria

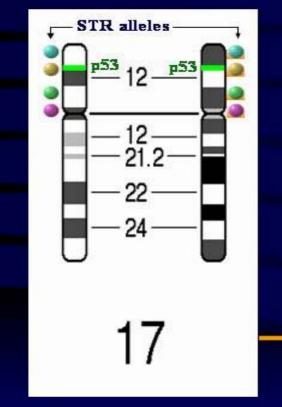
- Technical papers without original data.
- Letters and those that did not address cervical cancer or p53 mutation.
- Those data only containing results from cell line studies.
- Papers that did not measure HPV and p53 mutation as the reference standard.

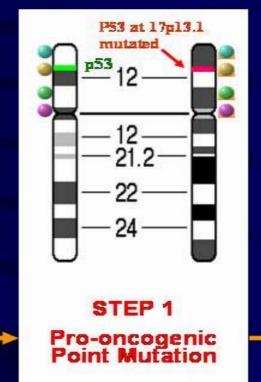
Methods Commonly used to Detect p53 Alterations

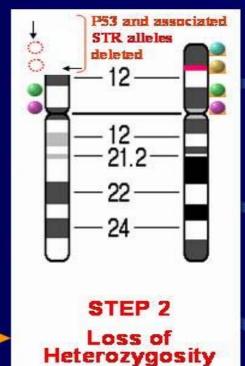

- Immunohistochemistry (IHC)
- Single-Strand Conformation Polymorphism (SSCP)
- PCR based methods to analyse LOH


of p53 located in 17p13 and polymorphism in p53.

Methods used to detect p53 mutation

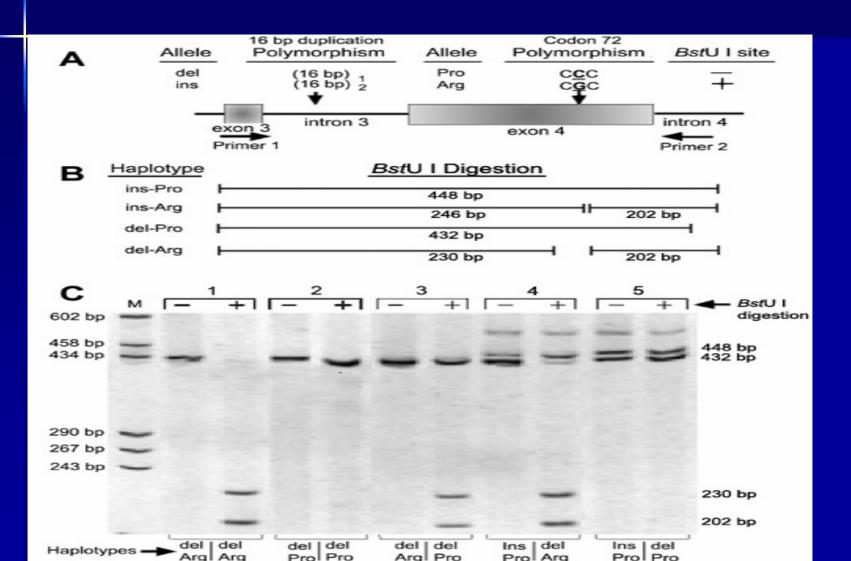






Loss of heterozygosity (LOH)

LOH in Knudson's "Double-Hit" Tumorigenesis Model



Li-Fraumeni Syndrome: germline p53 mutation

p53 polymorphism

Results

P53 mutation in cervical cancer

- Correlation between p53 mutation and HPV
- Correlation between p53 mutation and radiotherapy
- LOH of p53
- P53 polymorphism
- Prognosis evaluation

Prevalence of p53 Mutation in Cervical Cancer (SSCP)

	References	Prevalence of p53	References	Prevalence of p53
	Borresen AL et al. 1992	2.17	Kim JW et al. 1997	1.47
	Fujita M et al. 1992	3.33	Ngan HY et al. 1997	2.0
	Crook Tet al. 1992	10.71	Helland A et al. 1998	42.11
	Paquette RL et al. 1993	3.57	Tenti P et al. 1998	13.51
	Helland A et al.1993	2.17	Gostout B et al. 1998	4.0
	Kessis TD et al.1993	3.45	Munirajan AK, 1998	9.0
			Limpaiboon T et al. 2000	11.76
	Busby-Earle RM et al.1994	2.13	Pinheiro NA et al. 2001	3.28
	Miwa K et al.1995	5.13	Harima Y et al. 2001	10.77
	Ikenberg H et al.1995	4.65	Denk C et al. 2001	5.56
	Kim KH et al.1995	10.94	Ishikawa H, et al. 2001	26.9
-	Milde-Langosch K, et al. 19	95 7.8		

Association between p53 Mutation and HPV Infection in Cervical Cancer (SSCP)

References	Cases	Prevalence of p53(%)	Prevalence of HPV (%)	P53 and HPV correlation
lshikawa H, et al. 2001	52	26.9	76.9	positive related
Helland A, et al. 1998	365	42	76.5	negative related
Munirajan AK, et al. 1998	43	9	70	not related
Milde-Langosch K, et al. 1995	51	7.8	80.4	not related
Kim KH, et al. 1995	64	15.6	67.2	not related

Correlation between p53 Expression and Prognosis in Cervical Cancer (IHC)

References	Cases	P53 Prevalence (%)	Related with prognosis
Gitsch G, 1992	43	46.5	not related
Oka K, 1993	192	25.5	not related
Kainz C, 1995	109	20.2	not related
Benjamin I, 1996	132	44	not related
Kersemaekers AM, 1999	136	32	not related
Horn LC, 2001	114	63.8	not related
Ngan HY, 2001	57	25.2	not related
Haensgen G, 2001	70	85.7	not related
Total	853	46.0%	

Correlation between p53 expression and prognosis in cervical cancer (IHC)

References	Cases	P53 Prevalence (%)	Related with prognosis
Tsuda H, 1995	26	46	related
Bremer GC, 1995	156	30.2	related
Raju GC, 1996	119	58	related
Waggoner SE, 1996	21	67	related
Uchiyama M, 1997	32	34	related
Carrilho C, 2003	45	50	related
Total	399	47.80%	

Correlation between p53 and Radiotherapy

References	Cases	Prevalence of p53	relation with radiotherapy
Oka K 2000	202	52.1	related
Mukherjee G 2001	78	34	related
Jain D 2003	76	53.9	related
Rajkumar T 1998	40	10	related
Ebara T 1996	46	63	not related
Nakano T 1998	64	84.6	not related

LOH of p53 in Cervical Cancer

	References	Cases	Prevalence of LOH	LOH and prognosis
	Atkin NB 1990	43	17	
	Kinoshita M 1994	11	36.4	
	Busby-Earle RM 1994	20	15	
	Mitra AB 1994	17	41.2	
	Park SY 1995	26	40	
	Wistuba I 1996	12	50	
	Mullokandov MR 1996	38	15	
	Kim JW 1997	55	5.5	
	Southern SA 1997	25	36	
	Kersemaekers AMF199	8 64	38	
	Harima Y 2001	65	33.8	related
-	Helland A 2000	79	18	related

P53 Polymorphism in Cervical Cancer

Pillai MR, India, 2002 Cervical cancer (Cxca): 232 Control: 198 Cxca (%) Control (%) Arg/Arg 20.2 18.5 Pro/Arg 48.4 51.3 Pro/Pro 31.4 30.2 No correlation with HPV.

P53 polymorphism in Cervical cancer and its precursor

- Nishikawa A, Japan, 2000
 Cervical cancer (Cxca): 87
 CIN: 28
- Cxca(%) CIN (%)
 Arg/Arg 44.8 39.3
 Pro/Arg 42.5 35.7
 Pro/Pro 10.3 21.4

No correlation with HPV and prognosis.

P53 Polymorphism in Cervical Cancer

Hernadi Z, Hungary, 2003
metastases nodes VS non-metastases nodes

•		nodes(+) (%)	nodes(-) (%)
	Arg/Arg	54.5	67.9
•	Pro/Arg	45.5	21.4
	Pro/Pro	9.1	7.1

No correlation with HPV.

Summary of Results

- The tumor suppressor gene p53 mutations were found to be uncommon in cervical cancer.
- The correlation between p53 mutation and HPV infection is controversial.
- LOH of p53 has also been found in cervical cancers and related to the progression of this malignancy, but not related with HPV status.
- The p53 polymorphism failed to be an individual risk factor in predicting the outcome of patients with cervical cancer.

Conclusion

Understanding the behaviour of p53 alterations, and analysing it thoroughly for each patient, could allow us to develop sound correlations between p53 status and patient outcome.

Conclusion-2

Epidemiological surveys should be undertaken in larger populations and in different geographical regions.

Postgraduate Research Training in Reproductive Health in China 2004

Acknowledgements

Geneva Foundation for Medical Education and Research.

- **IAMANE.**
- All teachers.
- **Tutor Dr. Anis Feki.**

