

PREVENTION OF NEONATAL INFECTIONS

Catalin Stan Unité de Développement en Obstétrique, H U G

NEONATAL SEPTICAEMIA

- <u>Early-onset</u>: first week
- ♦ Late-onset: 7-28 days
- Perinatal septicaemia: first 24-36 hours

Epidemiology

- ♦ 1 to 5 cases/1000 live births
- ♦ 1970-1980s: E. Coli, K. Pneumoniae, P. Mirabilis
- ♦ 1990s: Group B Streptococcus, E. Coli, Enterobacter
- Differences depending on countries/continents

Pathogenesis

- Maternal infection
- Amniotic fluid infection (frequent)

Prevention

- Prevention of hematogeneous spread: maternal fever
- Prevention of ascending infection:
 - Risk factors:
 - ◆ Vaginal examinations ≥ 6 (Seaward 1997)
 - ◆ Duration of active labour ≥ 12h (Seaward 1997)
 - ◆ Rupture of membranes before labour ≥ 24h (*Gunn 1970*)
 - Group B Streptococcal colonisation (CDC 1996)

Prevention

• Mother:

- vaginal disinfection during labour (Taha 1997)
- induction of labour (Hannah 1996)
- antibiotic prophylaxis (see GBS) (Smaill 1994)
- antibiotic treatment if suspected chorioamnionitis

Neonate:

- surveillance (CBC, CRP) if risk factors
- antibiotic prophylaxis

Problems

Low incidence, but high mortality and morbidity

 surveillance of many pregnancies to prevent one infection
 surveillance of many neonates to prevent one infection

- Costs
 - diagnostic test
 - antibiotic treatment
 - hospitalisation and care
 - future costs because of sequelae
- Limitations:
 - women's access to health services
 - anaphylaxis, bacterial resistance

EARLY-ONSET GROUP B STREPTOCOCCAL SEPSIS

- USA, Australia (before adoption of preventive strategies)
 - incidence of the neonatal GBS sepsis: 1.4-3.0 ‰
 - prevalence of maternal colonisation: 18-35%
- Europe:
 - incidence of the neonatal GBS sepsis: 0.2-1.0 ‰
 - prevalence of maternal colonisation: 7-15%

EPIDEMIOLOGY

Prevalence of maternal colonisation: 2 - 35% Vertical transmission to the neonate: 40 - 70%Early-onset GBS sepsis: 1 - 2% of the colonised neonates Sequelae: 10 - 20% Mortality: 6 - 20%

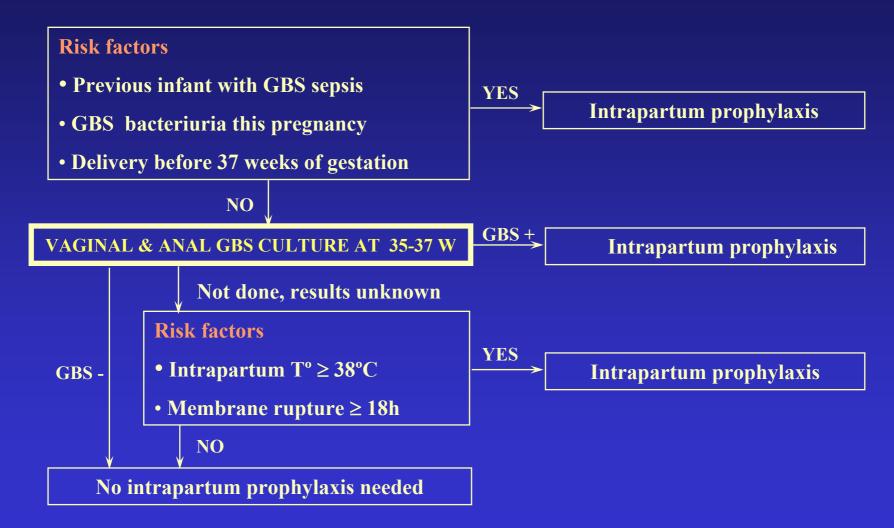
EARLY-ONSET GBS SEPSIS

- < 5 7 days
- 90% during the first 12 hours
- 1 2% of the colonised neonates
- rapid evolution
 - ARDS/septic shock

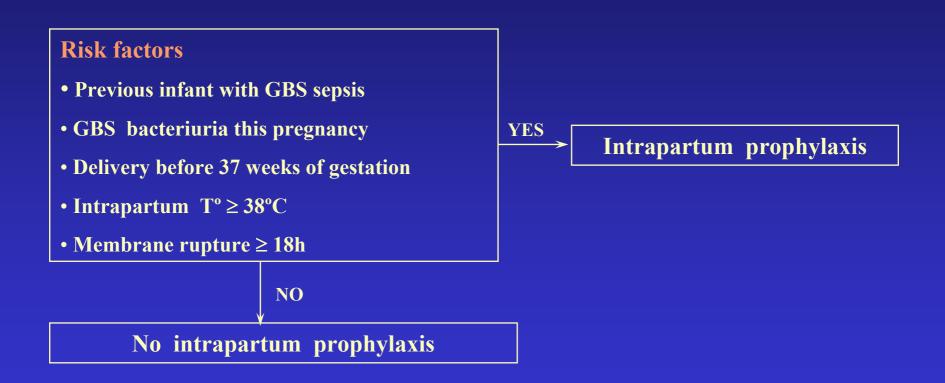
PREVENTION OF THE EARLY-ONSET GBS SEPSIS

- After delivery ? → TOO LATE, the fetus is generally infected before delivery
- Treatment of GBS colonised women?
 - during pregnancy: inefficient (recolonisation)
 - during labour: appropriate (Smaill 1994)
- Culture during labour? → Results after > 36h
- Rapid tests?
 Low sensitivity (Yancey 1992)
- Treat all women during labour? → Inacceptable

PREVENTIVE STRATEGIES

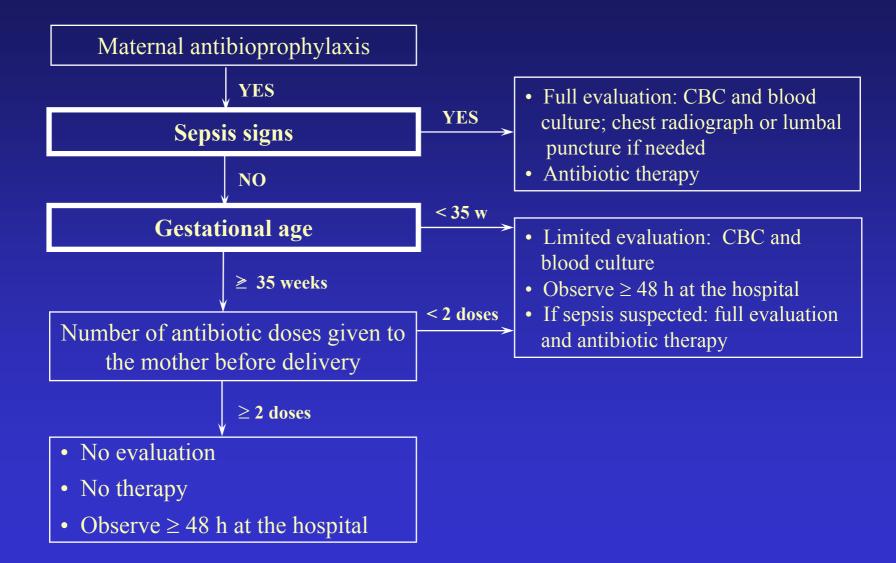


Consensus CDC & AAP & ACOG (1996)


Two equivalent strategies are accepted:
1. Strategy based on vaginal and anal culture screening at 35 - 37 weeks

2. Strategy based on risk factors

STRATEGY BASED ON CULTURE SCREENING AT 35 - 37 WEEKS


STRATEGY BASED ON RISK FACTORS

ANTIBIOTICS

- IV antibiotics during labour: decrease the risk of vertical transmission by 90% (*Smaill 1994*)
- Administration (De Cueto 1998):
 - < 1h before delivery: vertical transmission 40%
 - 1-2h: transmission 28%
 - 2-4h: transmission 2.9%
 - $->4h (\geq 2 \text{ doses})$: transmission <1%
- Proposed antibiotics:
 - by penicillin G or ampicillin
 - \clubsuit allergy: clindamicin *or* erythromycin

MANAGEMENT OF THE NEONATE

PREVENTIVE STRATEGIES

- The incidence of the early-onset GBS sepsis decreased from 1.4-2.0% to 0.2-0.8% in the USA and Australia (Schuchat 1999, Jeffery 1998, Isaacs 1999)
- Compliance: 50-90% (Cheon-Lee 1998, Lieu 1998)
- Side effects:

risk of anaphylaxis (Towers 1998)
risk of bacterial resistance (Morales 1999)
incidence of E. Coli sepsis (Towers 1998)

CURRENT POLICY IN OUR OBSTETRIC CLINIC

- No routine GBS culture during pregnancy
- Cervico-vaginal cultures, including GBS if:
 - preterm labour
 - preterm premature rupture of membranes
 - leucorrhea
- Antibiotic treatment during labour if:
 - − maternal fever (\geq 38°C)
 - positive GBS culture during pregnancy (urine or cervix)
 - preterm premature rupture of membranes before 34 weeks

GENEVA STUDY - OBJECTIVES

- To estimate the prevalence of maternal GBS colonisation, of risk factors, the predictive value of the GBS culture at 35-37 weeks of pregnancy
- To analyse the impact of preventive strategies compared with the current policy in our clinic.

MATERIEL AND METHODES

- Prospective cohort study
- Rectovaginal GBS culture at 35-37 weeks (n = 264) and during labour (n = 334). Both cultures in 208 women.
- Decision and economic analyses.

RESULTS

Geneva epidemiological data concerning GBS:

- Incidence of the early-onset GBS sepsis: 0.4‰
- Maternal colonisation (labour): 7.8% (95% CI: 5-11)
- Recto-vaginal culture at 35-37 weeks
 sensitivity 33% (95% CI: 14-59)
 specificity 95% (95% CI: 90-97)
- Prevalence of risk factors: 17.7% (95% CI: 14-21)

RESULTS

Prevalence of risk factors: 17.7%

- Premature delivery: 7.4%
- Rupture of membranes \geq 18h: 8.8%
- ◆ Fever during labour: 1.6%
- ◆ GBS bacteriuria during pregnancy: 1.6%
- Previous infant with invasive GBS disease: 0.5%

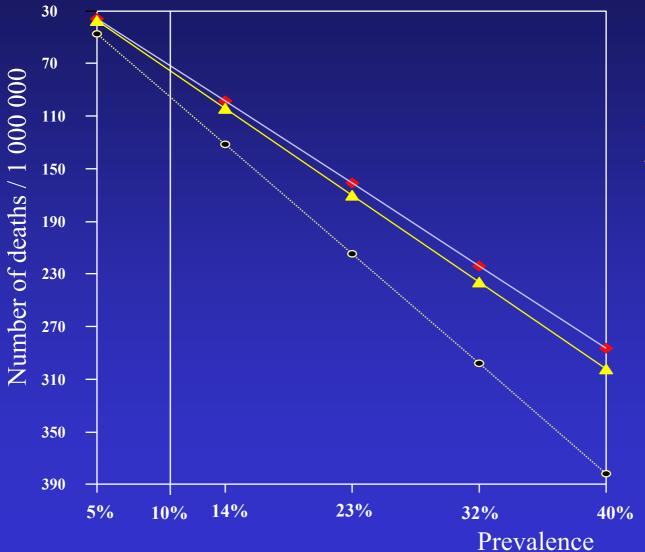
Predictive value of the antenatal culture

GBS - Labour 7.8%

		+	_	TOTAL
GBS 35-37w 10.6%	+	6	10*	16
	-	12	177	189
	TOTAL	18	187	205

* 3 cases excluded for antibiotherapy because of antenatal culture +

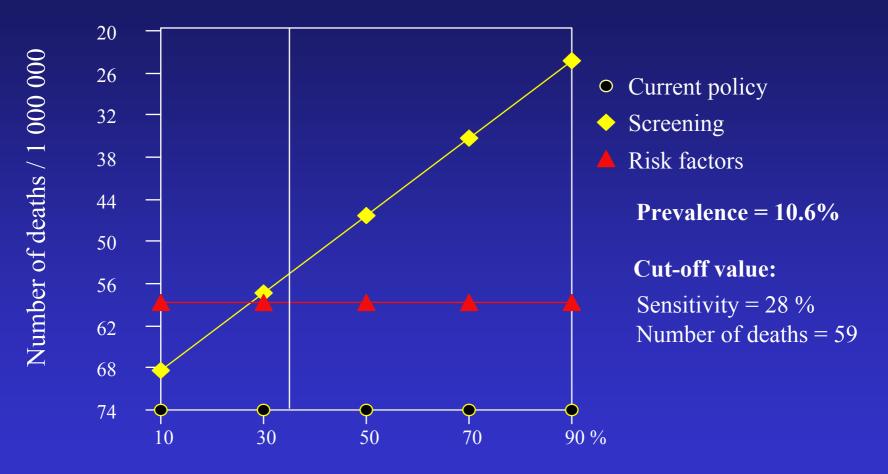
Sensitivity	33%	95% CI : 14 - 59%
Specificity	95%	95% CI : 90 - 97%
PPV	38%	95% CI: 16 - 64%
NPV	94%	95% CI: 89 - 97%


Predictive value of the risk factors

	GBS - Labour 7.8%			
		+	-	TOTAL
RF 17.7%	+	8	49	57
	-	18	259	277
	TOTAL	26	308	334
Sensitivity	31%		95% CI	: 13 - 49%
Specificity	84%		95% CI: 80 - 88%	
PPV	14%		95% CI	[: 5 - 23%
NPV	94%		95% C	[: 91 - 96%

PREVENTIVE STRATEGIES

	Expected sepsis/	Prevented sepsis/	Cost /	Marginal cost
	10 ⁶ births	10 ⁶ births	10 ⁶ births	effectiveness ratio
Current policy	378		\$ 4 970 000	
Risk factors	309	69	\$ 11 146 000	\$ 89 500
Screening	276	102	\$ 29 933 000	\$ 698 200


SENSITIVITY ANALYSIS: prevalence of maternal colonisation

- Current policy
- Screening
- A Risk factors

Sensitivity of antenatal culture screening = 33%

SENSITIVITY ANALYSIS: Sensitivity of the antenatal GBS culture for predicting colonisation at delivery

Sensitivity of the antenatal culture (35-37w)

PREVENTIVE STRATEGIES

	Proportion of	Anaphylaxis/	NNT*
	treated women	10 ⁶ births	
Current policy	6%	6	
Risk factors	13.5%	13.5	1087
Screening	16.5%	16.5	1029

*Number of women needed to treat to avoid one neonatal GBS sepsis

EFFECTIVENESS AND COST EFFECTIVENESS RATIO: sensitivity analysis

		Prevalence of maternal GBS colonisation		
		7.8%	20%	30%
Risk factors	CE*	89 500	43 000	33 000
	E	69	171	257
Screening				
Sensitivity 33%	CE*	698 300	295 000	207 000
	E	102	255	382
Sensitivity 87%	CE*	155 000	79 000	62 000
	E [†]	234	584	876

* Marginal cost effectiveness ratio in \$/prevented sepsis

[†] Effectiveness of a preventive strategy compared to the current policy (prevented sepsis/10⁶ births)

CONCLUSIONS

- Effectiveness: strategies based on risk factors and screening are more effective than the current policy
- **Cost:** preventive strategies have important costs; the screening strategy has the highest cost in our context
- Cost effectiveness: important increase of the cost per averted sepsis if adoption of a screening strategy

CONCLUSIONS

Prevention decreases the incidence of the early-onset GBS sepsis

Problems:

- detection of high-risk mothers and neonates: incomplete
- high costs for the screening strategy and for the antibioprophylaxis
- is it reasonable to give antibiotics to 20-40% of women in labour?
- could we afford a cost to prevent a GBS sepsis case between
 \$33 000 and \$700 000 ?
- probably a good option in countries with high incidence of GBS sepsis and with important health ressources

CHOICE OF A PREVENTIVE STRATEGY

- low incidence of the early-onset GBS sepsis in Geneva
- high cost of the preventive strategies
- significant increase of the proportion of women receiving antibiotics during labour

Implementation of a preventive strategy does not seem justified in our clinic

CONCLUSIONS

Search for alternative attitudes:

- Antibioprophylaxis limited to women with positive GBS screening presenting with risk factors (*Jakobi 1996*)
- Vaginal disinfection with chlorhexidine: efficient (Burman 1992, Adriaanse 1995, Taha 1997)
- PCR rapid test (Bergeron 2000)
- Vaccine: not yet available (Harrison 1998)

DISINFECTION OF THE BIRTH CANAL (Taha TE et al. BMJ 1997;315:216-20)

- Objective: Does disinfection of the birth canal during labour reduce infections in mothers and babies postnatally ?
- Design: Alternate periods of intervention (chlorhexidine
 0.25%) and no intervention in a tertiary centre in Malawi
- Participants: 6965 women giving birth over a 6 month period to 7160 babies

RESULTS

	Intervention		No inter	vention	Relative Risk
	No	Rate*	No	Rate*	(95% CI)
Infants	(n=3743)		(n=3417)		
 Admissions due to sepsis 	29	7.8	61	17.9	0.43 (0.28-0.67)
 Mortality due to sepsis 	9	2.4	25	7.3	0.33 (0.15-0.70)
Mothers	(n=3635)		(n=3330)		
 Admissions due to sepsis 	6	1.7	17	5.1	0.37 (0.13-0.82)
• Admissions overall	107	29.4	134	40.2	0.73 (0.57-0.94)

* Rates are per 1000 live births (infants) and per 1000 deliveries (mothers)

Influence of prevalence on the decision to implement an intervention

	Malawi	Geneva
• Prevalence	18‰	1‰
• RR	0.43	0.43
• DR	10‰	0.6‰
• NNT	100	1600

Prevalence of a disease influences the absolute effectiveness and the decision to implement an intervention

CONCLUSIONS

- Cleansing the birth canal with chlorhexidine reduced early neonatal and maternal postpartum infections
- The simplicity and the low cost of the procedure suggest that it should be considered as standard care to lower infant and maternal morbidity and mortality
- Other studies showed similar results: *Burman 1992, Adriaanse 1995*