Incomplete surgical management of epithelial ovarian cancer.

Can it be improved?

Attila Louis Major, MD, PhD

Epithelial Ovarian Cancer

- Fourth most frequent cause of "cancer-related", death
- 65% diagnosed with stage III-IV disease
- Initial response: 80% platinum sensitive
- 5 year survival rate: 15-20%
- Second look laparotomy
 - Historically: no effect on survival
 - 1/3 macroscopic
 - 1/3 microscopic
 - 1/3 negative
 - 50% of patients with a negative second look laparotomy will recur

Ovarian cancer survival by stage of diagnosis

Stage	5-year survival rate (%)
I	85–90
II	80
III	15-20
IV	5

Ovarian cancer staging system by FIGO

Stage		Description	5-year survival Rate (%)
1. I		Growth limited to the ovaries	90 (30%)
	Ia	One ovary involved no ascitis capsule intact	92
	Ib	Both ovaries involved	85
	Ic	Ascites present, or positive peritoneal washing, tumor on the surface of the ovary	82
2. II		Growth limited to pelvis	57 (10%)
	IIa	Extension to the uterus and the tubes	69
	IIb	Extension to other pelvic tissues	56
	IIc	Like Ic	51
3. III		Growth extending to abdominal cavity, including	24 (32%)
		peritoneal surface and omentum	
	IIIa	Microscopic abdominal implants, negative nodes	39
	IIIb	Macroscopic abdominal implants, < 2 cm, negative nodes	25
	IIIc	Abdominal implants > 2 cm and/or positive nodes	17
4. IV		Metastases to distant sites (positive pleural cytology, parenchymal liver metastasis)	12 (28%)

Recommended surgical staging procedures

- Peritoneal washings
- Total abdominal hysterectomy and bilateral salpingo-oophorectomy (Unilateral salpingo-oophorectomy may be appropriate for selected patients with Stage IA disease who desire to defer definitive surgery until completion of childbearing.)
- Infracolic omentectomy
- Pelvic and para-aortic lymph-node sampling
- Peritoneal biopsies from:

cul-de-sac rectal and bladder serosa right and left pelvic sidewalls right and left paracolic gutters right and left diaphragms any adhesions

Surgical staging practice in patients with early ovarian carcinoma

Authors (year)	Period under study	Country	# patients	FIGO Stage	% receiving complete staging
Trimbos	1981-	Nothorlondo	12	τα ττα	50/
1990	1988	Netherlands	43	IA-IIA	J70
Högber	1984-	Sweden	1/0	T TT*	200/
1993	1987	Sweden	148	1-11 .	20%
Junor 1994	1987	UK	123	I-II#	0% for GS 76% for OBG
Munoz 1997	1991	USA	785	I-II	10%
Zanetta	1981-	Italy	251	т	200/
1998	1991	Italy	551	1	20 ⁷ /0
Petignat	1989-	Quitzonlogd	27	ттт	20/
2000	1995	Switzerland	3 /	1-11	3%0
OBG : Obstetr	rician-gyneco	logist GS : C	General surge	eon	
*Adequate sta	ging did not i	nclude lymph no	ode sampling	J	

#Adequate staging included TAH-BSO with or without omentectomy

Results of restaging laparotomies in women with apparent early stage ovarian carcinoma

Authors (year)	Number of patients	FIGO stage at initial surgery	% upstaged
Bagley 1973	5	I-II	60%
Young 1983	100	IA-IIB	31%
Helewa 1986	25	Ι	20-25%
Buchsbaum 1989	140	I-II	22,4%
Archer 1991	24	I-II	20,8%
Soper 1992	30	I-II	30%
Stier 1998	45	IA-IIB	16%
Leblanc 2000	28	I	21%

Influence of operating physician's specialty on patient survival

Authors (years)	# patients	Study period	Surgeons	Survival by managing surgeon	P values
Mayer 1992	47	1981- 1987	GYO vs OBG vs GS	GYO > OBG and GS	P < 0.005
Nguyen 1993	1,377	1983- 1988	GYO vs OBG vs GS	GYO and OBG > GS	<i>P</i> <0.004
Kehoe 1994	1,184	1985- 1987	OBG vs GS	OBG >GS	<i>P</i> <0.00001
Puls 1997	54	unknown	GYO vs OBG	GYO > OBG	<i>P</i> <0.05
Woodman 1997	691	1991- 1992	OBG vs GS	OBG > GS	P < 0.01

GYO: Gynecologic oncologist OBG: Obstetrician-gynecologist GS: General surgeon

Intra and postoperative complications after surgical staging of early epithelial ovarian cancer

Authors	# patients	<pre># complications (%)</pre>	Visceral	Vascular	Infection
Buchsbaum	154	74 (29%)	23	1	30
1989					
Trimbos 1990	46	14 (30%)	3	3	5

Clinical Studies in Gynecology

- Endometrial Destruction (PF, ALA, BPD)
- Condyloma
- Cutaneous metastasis of breast cancer
- Cervical and vulvar dysplasia
- Peritoneal cavity (ovarian cancer, endometriosis)

Second look surgery: Why perform it?

• Contra

- Recurrence rates of 50 % after negative second look surgery
- Absence of proven salvage therapy
- Lack of demonstrable survival benefit

• Pro

- No proven alternative surveillance techniques (CT, Ca125, etc.)
- Possible survival benefit of secondary cytoreduction
- Possibe long term survival benefit for patients undergoing second line chemotherapy with minimal residual disease.

Survival by performance of second look

Survival by outcome of second look

Enhanced diagnosis through photodetection

- *Photodetection* of ovarian cancer peritoneal implants in the animal model
- Determination of the best Photosensitizer
- *Photodetection* of ovarian cancer peritoneal implants in ovarian cancer patients

Photodynamic Principle

• Use of a photo-enhancing or photosensitizing chemical to aid in the diagnosis or treatment of a target cell

Principle of PDT

"SELECTIVE" DESTRUCTION

"SELECTIVE" ILLUMINATION

<u>NuTu-19 Ovarian Cancer Animal Model</u>

- Completely analogous to human epithelial ovarian cancer
- Cell line NuTu-19 Spontaneous mutation
- Histology Poorly differentiated ovarian adenocarcinoma with papillary features.
- Growth pattern I.P. serosal nodules with local tissue invasion (omentum, diaphragm, liver, peritoneum)
- Malignant ascites average vol. 50-70ml in 6 weeks
- Survival 10⁶ cells I.P are 100% fatal, mean survival of 50 days
- Non-immunogenic tumor developed in an immunocompetent host

Rose et al AJOG 9/96

In vivo fluorescence (A) and light images (B) of omental tumor nodules and small bowel mesentery tumor nodules. Transparent omentum is overlying the small bowel. . Fluorescence was excited using a uv lamp 3 hr after ip administration of 200 mg/kg ALA. Control fluorescence disk is indicated by an asterisk

Major A. et al Gynecol Oncol 1996, 66 : 122-32.

Epithelial ovarian cancer PDD in NuTu-19 rat model

8mM h-ALA IV prior to photodetection 2 hours later

Numbers of metastases detected with white and blue light detection for different concentrations of h-ALA and ALA

Concentration [mM]	Time after inst.	White light	Bluelight	Ratio
4	2.5	9	19	2.1
4	2.5	0	4	8
8	2.0	21	37	1.8
8	2.0	36	57	1.6
8	2.0	13	29	2.2
8	2.0	4	24	6
12	2.0	3	8	2.7
20	2.0	9	25	2.8
8 (ALA)	2.0	10	16	1.6

Lüdicke F et al, subm Photochem Photobiol

Human Epithelial Ovarian cancer PDD

10mg/ml ALA applied topically prior to photodetection

Ovarian cancer PDD second-look feasability Study

CONCLUSIONS

- Photodetection has been shown to be efficient in the animal model and feasible in patients
- Photodetection of ovarian cancer peritoneal implants, not visible by other methods, is a conceivable goal for the future
- The impact on survival has to be demonstrated in further studies

Hubert van den Bergh

Georges Wagnières

Norbert Lange Didier Goujon Nora Dögnitz Tanja Gabrecht Veronique Baulex Thomas Stepinac

Hopitaux Universitaires de Genève

Attila Louis Major

Frank Lüdicke Sandor Viski Anis Feki

The nurse team Frederic Bylebyle Werner Marie-Lore

Patrick Ubaud

PHOTORADIATION THERAPY OF CANCER (Laser-Hematoporphyrim Derivative)

"The facts remains that a large number of patients are being treated almost to the point of "cure" and an additional stroke of some sort is needed."

(DiSaia, Clinical Gynecological Oncology, Mosby-Year Book, 1997)

Photosensitizers

- Porphyrins
 - Photofrin (PF)
 - "Aminolevulinic acid (ALA)",
 Protoporphyrin IX (PpIX)
- Chlorins
 - m-Tetrahydroxyphenyl chlorin (mTHPC)
 - Benzoporphyrin derivative mono-acid (BPD)
 - Tin ethyl etiopurpurin (SnET2)
- Phtalocyanines

generation PS

PS	Dose (mg/kg)	D / L (hours)	WL (nm)	Light dose (J/cm ²)
mTHPC	0.075 - 0.15	96	652 (red)	5 - 20 75 - 120
ALA-PpIX	60	4 - 6	635 and 405	10 - 200
BPD-MA	Topical 20% 0.3	1 - 2	(red and blue) 690 (red)	50 - 150
NPe6	0.5 - 1	4 - 8	664 (red)	50 - 100
Lu-Tex	0.6 - 7	3	732 (red)	150
SnET2	1.2	24	660 (red)	200

Historical

- 1976 J. F. KELLY + M. E. SNELL <u>First clinical PDT</u> of a bladder carcinoma with HPD. (J. Urol., 115, 150, 1976).
- **1978 T. J. DOUGHERTY et al.- Clinical assessment of PDT** (Cancer Res., 38, 2628, 1978).

! LASERS + OPTICAL FIBERS !

1993 First approval (by the canadian health agency) of PDT with Photofrin® for the prophylactic treatment of bladder cancer.

Potential of In Vivo Fluorescence

- Staging laparotomy
 - 30% upstaged (Young RC, JAMA, 1983; Zanetta G, Ann Oncol, 1998)
- Second Look
 - 50% recurrence of negative second-look after combination chemotherapy (DiSaia PJ, Mosby-Year Book, 1997)

Survival versus diameter of largest residual disease

Survival by initial tumor size

TableSummary of initial treatment recommendationsfor ovarian cancer by stage at presentation

After initial staging procedure/ cytoreductive surgery

Stage I A, grade 1 or 2

Stage I B, grade 1 or 2

Stage IA or IB, grade 3; Stage IC; Stage II

Stage III, optimally debulked

Stage III, suboptimally debulked; Stage IV

Recommendation

Observation

Observation

Paclitaxel + carboplatin, 3 cycles or participation in GOG 175

Paclitaxel + carboplatin, 6 cycles or participation in GOG 172

Paclitaxel + carboplatin, 6 cycles