The Genetics Consultation in OB-GYN : Reproductive pathologies and prenatal diagnosis

Célia DeLozier-Blanchet Division of Medical Genetics, Geneva University Hospital Etiologies of malformations / genetic disorders

• Chromosomal (monosomies, trisomies)

- *Monogenic* (dominant, recessive, X-linked)
- *Exogenous* (pre- or postnatal environment)
- *Multifactorial* (predisposition + environment)

Genetic resolution levels

- HUMAN GENOME
 - about 30,000 genes

(3,000,000 kilobases of DNA)

- AVERAGE CHROMOSOME
 - about 1500-2000 genes (150,000 kilobases)
- AVERAGE METAPHASE BAND
 - about 100 genes (7500 kilobases)

Prenatal diagnosis in 2001: detection of disorders of genetic etiology

- Chromosomal anomalies
 - all chromosomes studied (all but subtle structural aberrations detected); high-risk populations tested
- monogenic disorders
 - direct analysis (mutations defined)
 - indirect (gene localisation known)
- multifactorial etiology
 - diagnosis by indirect means (US; mat. serum)

Prenatal diagnosis: Limitations

- We can diagnose, but rarely treat
- We can diagnose presence of the disorder, but rarely its severity
- Test which give the most information carry risks for the pregnancy
- Results available "late" in pregnancy
- No sure means of prenatal diagnosis for the majority of malformations / syndromes

Non-invasive Prenatal diagnosis

•Ultrasound

Types of prenatal diagnosis

Non-invasive tests

- Ultrasound
- Maternal serum screening
- Invasive tests
 - Amniocentesis
 - Chorionic villus sampling (CVS)
 - Cord blood sampling (cordocentesis)

Ultrasound markers (for Down syndrome)

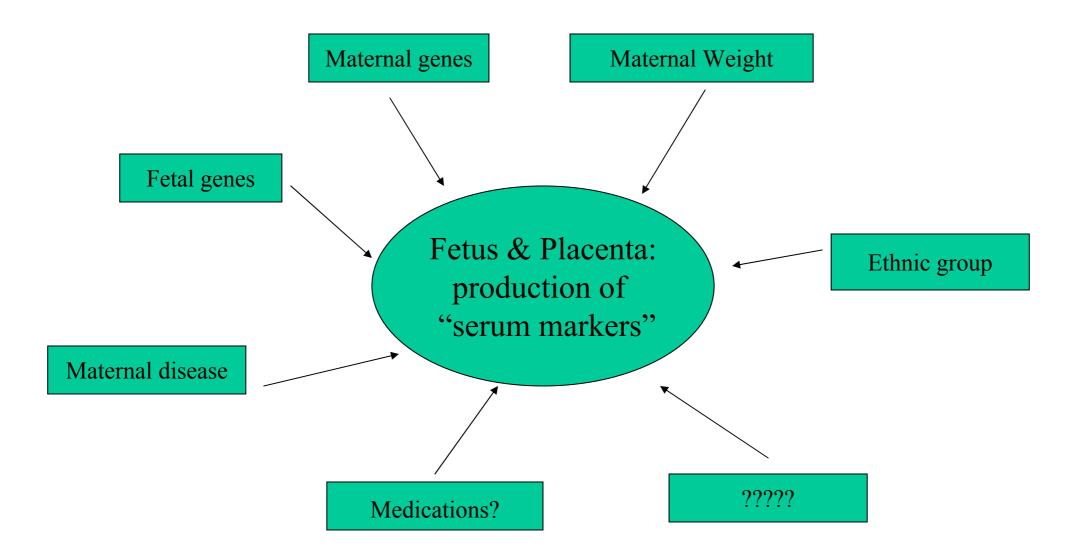
- Nuccal translucency (1st trimester)
- Intestinal symptoms
- Skeletal alterations (including growth)
- Malformations

"Noninvasive" prenatal diagnosis

Maternal serum screening

- in the second trimester
- in the first trimester
- combined screening

Second trimester serum markers


• Alpha-fetoprotein (AFP)

• Human chorionic gonadotropin (HCG)

Uncongugated estriol (uE3)

First trimester serum markers

- Pregnancy-associated plasma protein A (PAPP-A)
- free beta-HCG
- Others??
 - Schwanger-shafts protein 1 (SDP-1)
 - prostate-specific antigen (PSA)?

Performance of Down syndrome screening at 8-14 weeks gestation

(from Kennard & Wald, 1996)

	<u>Maternal age</u>	with free b-HCG	and PAPP-A
risk cut-off level	detection rate (%)	False-positive rate (%)	OAPR
1:100	45	1.5	1:25
1:200	57	3.5	1:47
1:300	63	5.5	1:67
1:400	68	7.4	1:84
1:500	72	9.5	1:102

Down syndrome rates and false-positive rates

(using triple test at different ages; risk cut-off 1/250) (from Kennard & Wald, 1995 & 1996)

Maternal age	Detection rate	Positive Rate
	(%)	(%)
25	36	3
30	45	5
35	66	13
40	89	41
45	99	79

Maternal serum analysis

(hormones and fetal products in maternal ciruclation)

Advantages

- No risk for the pregnancy
- May reduce the number of invasive tests requested
- Screening test which indicates at risk pregnancies
- Can be applied on a large scale (general population)

Disadvantages

- Gives only a risk of being affected; requires additional analyses
- Second trimester screening gives late results (later amniocentesis)
- Knowledge of physiological factors affecting markers still incomplete

Counseling issues in serum screening

- Who to screen?
 - all pregnancies?
 - all but those who will have amniocentesis?
 - only women who would have amniocentesis and potential abortion?
- How to inform?
 - explained by gynecologist before test?
 - explained by gynecologist only after results?
 - by brochure or video, questions afterwards?
 - during prenatal consultation with geneticist?

Counseling difficulties linked to serum screening

- Time and timing (for counseling)
- Generation of anxiety
- False positives and false negatives
- Scientific unknowns
- Insurances and financial factors
- Disagreement within couples
- How far to go?

Analysis of fetal cells in maternal circulation

• A promising technique en theory, but:

- technically difficult to separate fetal cells
- genetic testing is limited by cell number
- "misuse" of methods to be anticipated!
- Current research concentrating on isolation of *free circulating fetal DNA*

Invasive methods

Amniocentesis

Cytogenetics: Indications for testing

- Prenatal tests
 - advanced maternal age
 - precedent gene or chromosomal disorder
 - previous abnormal infant or pregnancy
 - positive serum screening, anxiety
 Trisomies, monosomies, and major structural anomalies detected; no routine gene analysis

Mosaicism on amniocentesis (from Hsu et al. PRENAT DIAGN 12:555-573)

Mosaicism

Origin of data	Cases studied	Percentage
US survey	62,279	0.25
European sur.	44,170	0.10
Canadian sur.	12,386	0.30
PDL data	12,000	0.20

FISH :

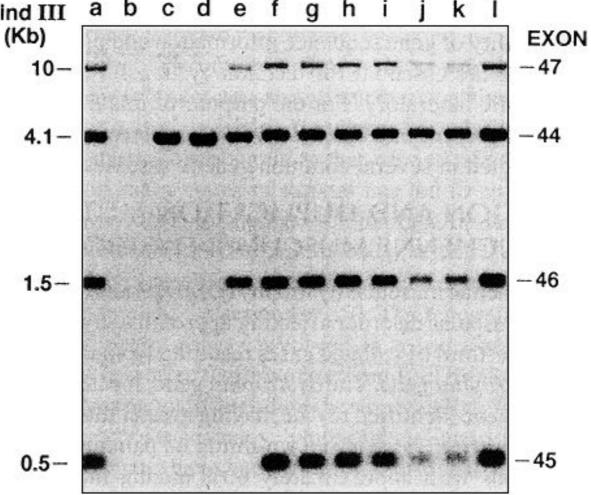
current uses in prenatal diagnosis

- family history of microdeletion/duplication
- determining chromosomal content of abnormal chromosomes
 - chromosomal paints
 - centromeric probes
- searching for mosaicism when abnormal cell(s) have been seen
- screening for common aneuploidies using uncultured cells (interphase)

Figure 2

Interphase FISH showing three copies of chromosome 2 (yellow) Control probe is chromosome 4 (red)

illustration.jpg


Invasive methods

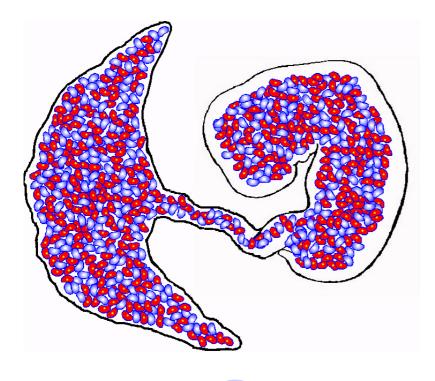
Choriocentesis

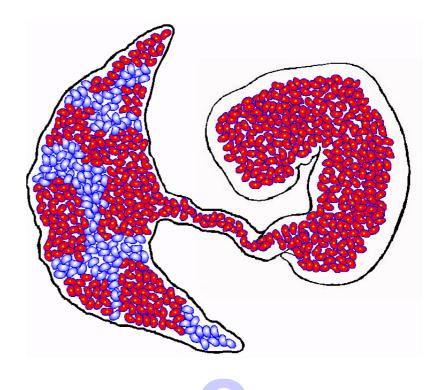
(chorionic villus sampling- CVS)

CVS is the preferred method of prenatal testing for DNA (gene) analysis!

Southern Hind III a b c d e

from: Principles of Molecular Medicine J.L. Jameson, ed. 1998 Humana Press Inc. p. 86


Chromosomal mosaicism detected by Chorionic Villus Sampling


--occurs in 1-2% of CVS

- -- necessitates further analyses to determine whether it is fetal or only in placenta and adnexes (further culture, amniocentesis, ultrasound)
- -- the majority of mosaic cases are LIMITED TO THE PLACENTA, but...
- -- depending on the chromosome, may predispose to reproductive pathologies (growth retardation, etc) even if confined to placenta

True Mosaicism or CPM?

Amniocentesis vs. Choriocentesis

Amniocentesis

higher success rate

superior cytogenetic image

results reflect fetal karyotype

very few false negatives or positives

Choriocentesis

results available earlier

preferred method for DNA analysis

option to verify by amniocentesis

problem of placental mosaicism

Invasive methods :

Fetal blood and tissue sampling

The choice of a method of prenatal diagnosis...

- depends on what type of analyses are planned
- for cytogenetic studies:
 - amniocentesis or choriocentesis
 - each method has advantages and disadvantages
- for molecular (DNA) analysis:
 - choriocentesis is the preferred method
 - for technical reasons and early results
 - amniocentesis can also be used
 - results come late in pregnancy

Genetic prenatal diagnosis in the near future

- Increase in the number of disorders we can diagnose
 - monogenic etiologies
 - genetic predispositions
- earlier and less invasive screening tests
 - separation of fetal cells from maternal blood
 - better biochimical markers from maternal circulation
- potential for fetal therapy?

Preimplantation diagnosis

- Requires assisted reproductive technologies
- Genetic analysis done on 1-3 cells (blastomeres)
- "Healthy" embryos are chosen for implantation

The Genetics Consultation in OB-GYN : Reproductive pathologies

Genetics and sterility (primary)

sex chromosome anomalies

- *numerical* (ex: 47,XXX; mosaic XXY or XO)
- *structural* (ex: deletions of X or Y)

autosomal chromosome anomalies

• *structural* (ex: translocations in males)

single gene disorders

- autosomal dominant (ex:
- autosomal recessive
- X-linked disorders

(ex: Steinert M.D. in male)(ex: cystic fibrosis mutations)(ex: androgen resistance)

Genetics and sterility (secondary)

sex chromosome anomalies

(ex: mosaic XXY or XO) numerical

autosomal chromosome anomalies

 structural (ex: translocations, inversions)

single gene disorders

- autosomal dominant
- autosomal recessive
- X-linked disorders

- (ex: Steinert M.D. in female)
- (ex: sickle cell anemia)
- (ex: focal dermal hypoplasia)

Genetic testing in infertility : Goals

- Determine origin of the infertility
- Identify syndromic causes (prophylaxis for the affected individual)
- Better estimate the probability of success with ART
- Offer genetic counseling
 - concerning ART methods
 - concerning prenatal diagnosis

Medical histories

Question (proband or family)

- pulmonary or digestive symptoms?
- Masculine infertility /

sexual ambiguity

Neuromuscular symptoms

Disorder (genetic transmission)

- cystic fibrosis (AR)
- immotile cilia syndrome (AR)
- partial androgen resistance (XLR)
- Kennedy disease (XLR)
- Steinert myotonic dystrophy (AD)

Azoospermia

- 15% of males have a chromosomal abnormality
- 13% of males have a *de novo* deletion of the azoospermia factor (AZF) region on Yq11
- 1-2% of males have congenital bilateral absence of the vas deferens (CBAVD)

- Genetic Counseling for Azoospermia Chromosomal Etiology (numerical)

- Discuss clinical features
- Discuss karyotypic findings
- Reproductive options
 - adoption
 - donor sperm
 - MESA/ICSI/IVF/PGD
- Theoretical recurrence risks

Genetic Counseling for A/Oligospermia -Chromosomal Etiology (structural)

- Discuss karyotypic findings
- Provide empirical risks
- Discuss implications for other

family members

Genetic Counseling for Azoospermia -Y Deletion

- Discuss AZF deletion versus polymorphism with no adverse phenotypic effect
- Reproductive options if de novo deletion of AZF
 - adoption
 - donor sperm
 - MESA/ICSI/IVF with/without prenatal dx

Genetic Counseling for Azoospermia - CBAVD

- Offer cystic fibrosis (CF) testing
 - 10-20% with 2 CF mutations
 - 40-60% with CF mutation

Discuss further medical evaluations

Genetic Counseling for CBAVD Due to CF Mutation(s)

- Ascertain patient's understanding of diagnosis
- Discuss genetics and relationship of CF and CBAVD
- Offer CF carrier screening to partner
- Risk assessment

CFTR mutations in males with abnormal spermograms (13 mutations CF)

(van de Ven et al.(1996) HUM REPROD 11:513-517)

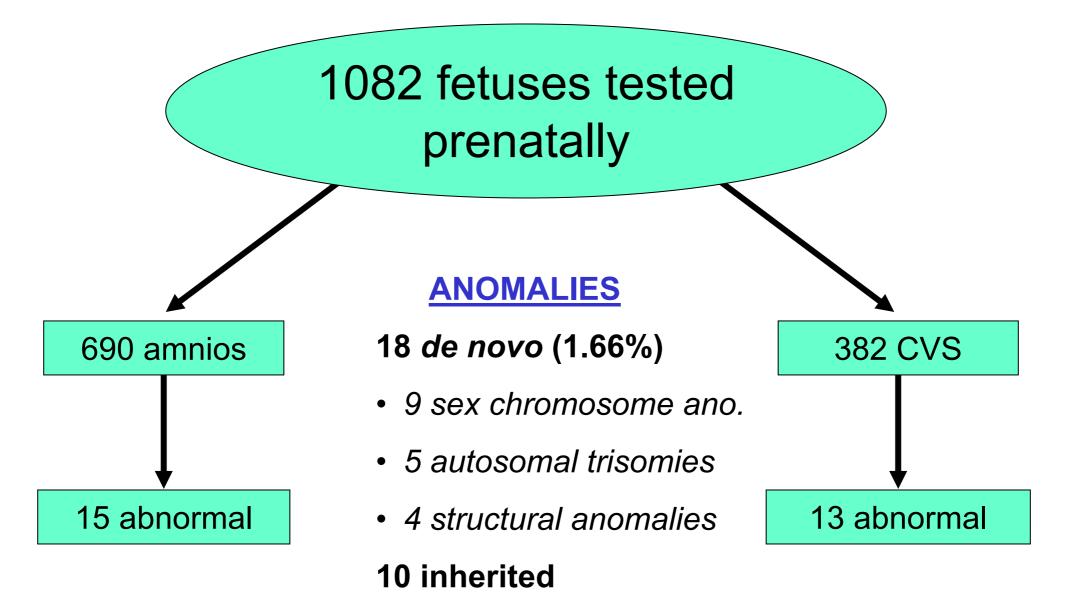
Diagnostic

normospermia

- azospermia
- asthenospermia
- teratospermia
- oligospermia
- OA
- OT
- OAT
- Jan AT

Number mutations /no.chrom.

- 0 / 52 (0%)
- 18/202 (8.9%)
- 4 / 42 (9.5%)
- 5 / 54 (9/2%)
- 1 / 8 (12.5%)
- ✓ 0 / 8 (0%)
- 1 / 10 (10%)
- 1 / 14 (7.1%)
- 5 / 32 (15.6%)
- 1 / 34 (2.9%)


Pre-ICSI counseling (while awaiting more definitive data.....)

Bonduelle et al., HUM REPROD 14:243-264

Before any treatment is started, patients should be informed of available data:

- risk of transmitting (parental) chromosomal aberrations
- risk of de novo, mainly sex chromosome, anomalies
- risk of transmitting fertility problems to offspring
- no increased incidence of congenital malformations

Bonduelle et al. (1999) HUM REPROD 14:243-264

Abnormal fetal karyotypes after ICSI (Bondeulle et al., 1999, HUM REPROD 14:243-264)

- 18 cases had de novo aberrations
- not expected because of maternal age (mean of 32.5)
- value of 0.83% of sex chromosomal anomalies is 4x
 higher than in newborns
- linked to male infertility in most of these couples
- increased incidence of de novo structural aberrations (0.36%) as well (3-4x more than expected)

THE END

plus some image