Impact of Chlamydia Trachomatis infection on male infertility

Dr. Jyotsna Gokral Senior Research officer Div. of Reproductive Endocrinology & Infertility Inst. for Research in Reproduction, Mumbai, India

Estimated Prevalence of Curable STIs Among Adults in Millions 1999 (WHO)

North America	3 million
Latin America	18.5
(incl. Carribbean)	
Western Europe	4.0
N.Africa and	
Middle East	3.5
Sub Saharan Africa	<u>32.o</u>
 Eastern Europe and 	
Central Asia	6.0
 East Asia and Pacific 	6.0
 South and S.East Asia 	<u>48</u>
Australia and New Zealand	250,000. Thousand
Global Total	116.5 million.

Estimated New Cases of Chlamydia Trachomatis Among Adults in millions (WHO) 1999

North America	4million
Latin America &The Carbibean	9.5
Western Europe	5.0
N.Africa & Middle East	3.0
Sub Saharan Africa	16
Eastern Europe &	6.0
Central Asia	
East Asia and Pacific	5.3
South and S.East Asia	<u>43.0</u>
Australia and New Zealand	340,000 Thousand
Global	92million

Global concern is due to long term morbidity and irreversible sequelae

Asymptomatic

•

- Young people
- Impact on Fertility
- Chronic Cervicitis (C.Trachomatis)

Detected late Higher incidence More in Females & long term sequelae. Increased rates of dysplasia and sero conversion to HIV

Sequelae of C. trachomatis

In Males

•

- Prostatitis
- Urethretis
- Epididymitis
- Vesiculitis
- Orchitis

- In Females
- Salphingitis
- Cervicitis
- Endometritis

Oophoritis

Aims and Objectives

To study the impact of Chlamydia Trachomatis infection on the seminal parameters of asymptomatic infertile males.

Materials and Methods

- Design: cohort studies
- Setting: Male Infertility Clinic
- Subjects: asymptomatic infertile males and their spouses
- Parameters studied: Semen analysis and leucocyte count (WHO), serum and seminal antibodies for C.Trachomatis, anti sperm antibodies, (Mar test), PCT, sperm mucus penetration test, acrosome reaction test

Results

Positive correlation (p<0.001) with tubal infertility (Eggert-Kruse 1997)

Seminal parameters and sperm-mucus penetration not affected Leucocytospermia no correlation (Videau 2001)

Decreased seminal parameters were shown due to IgA antibodies in the semen (Witkin 1995) of infertile men Positive correlation with previous H/o STIs

Detection by culture difficult

Serovar E showed significant decrease in sperm motility (Hosseinzadeh 2001)

Antibodies to both C. Trachomatis and C. pneumoniae were dectected in semen of infertile men (Bollerman 1998)

Table-1 Relationship of Chlamydia serology with the male factor: variables of semen analysis (Eggert-Kruse et al, 1997)

	Negative	Positi	ve Total	
Semen analysis				
Oligospermia	17.6(202/1148)	15.7(26/166	17.4(228/1314)	ns
Sperm count<40 mill/ml	44.6(512(1148)	41.0(68/166	44.1(580/1314)	ns
Asthenospermia <20%	9.2(105/1138)	6.6(11/166)	8.9(116/1304)	ns
Progressive motility<40%	37.3(425/1138)	25.9(43/166	35.9(468/1304)	ns
Sp Morp.<60% normal	35.7(391/1095)	32.5(50/154	35.3(441/1249)	ns
Ph>7.4	44.4(508/1143)	45.8(76/166	44.6(584/1309)	ns

 \bullet \bullet \bullet

Table-2 Relationship of Chlamydia serology with the tubal factor C.Trachomatis. antibodies

Tubal factor	Negative	Positive	Total	р
Patency of both tubes	70.(776)	49.8 (140)	66.2 (916)	<0.001
Both tubes blocked/one blocked (total)	29.6(326)	50.2 (141)	33.8 (467)	<0.001

Table-3 Relationship of chlamydial serology with the male

factor sp.mucus interaction in vitro and in vivo as

parameters of functional capacity

(Eggert-Kruse1997)

Sp-mucus pent.test	Negative %	Positive %	Total %	р
1) Motility reduced after 2 hrs. (partners cervical mucus)	27.2 (304/1119)	25.5 (42/165)	26.9 (346/1284)	ns
Motility after 6 hrs	30.1(337/1119)	30.3 (50/165)	30.1 (387/1284)	ns
2) Motility at 2 hrs (donor mucus)	23.5 (259/1104)	19.8 (32/162)	23.0 (29171266)	ns
6hrs	26.5 (292/1104)	24.1(39/162)	26.2 (33171266)	ns
PCT neg	23.5 (24571044)	31.9 (47/147)	24.5 (292/1191)	ns

Chlamydia IgA-Antibodies in seminal plasma Comparison of positive results with Elisa and MIF

Mechanism of Action of C.Trachomatis Infection Affecting Male Fertility.

- * Humoral-Antibodies present in the serum and semen as a response to C.Trachomatis related inflammation
- * Local- Anti sperm antibodies in the seminal plasma
- * Inflammation of accessory glands decrease in carnitine, Zn, fructose, alpha glucosidase
- * Direct effect on the gamete reducing fertilising potential ROS, antibodies to C. Trachomatis, ASA (decrease in fertilising potential of the spermatozoa)

* Elementary bodies within the gamete

Reasons for Controversies

- Control samples (proven fertile) for true prevalence is needed
- Individual variations of samples
- Variables affecting fertility
- Cross-reaction with normal flora and other pathogens
- Particular serovar may show an impact
- Antibodies means past infection, may not correlate with present status

Conclusions

- Younger people are more frequently affected by C.Trachomatis
- Impact is positively associated with tubal infertility in females
- Its impact on male fertility is controvertial, as presence of antibodies or leucocytospermia did not decrease seminal parameters
- Indirect effect on fertilising potential cannot be ruled out

 Certain serovars and species specific antibodies may affect seminal parameters Future Strategies to study the impact of C.Trachomatis on male fertility

Use of a sensitive method of detection

- True prevalence determined by control studies
- Estimating seminal biochemical factors affecting fertility
- Studing species -specific antibodies and Serovars affecting fertility
- In-vitro studies to determine cause and effect

Acknowledgements

• Dr. A. Campana

- Dr. Regina Kullier
- Dr. Ariane de Agostini
- Ms. Eva Mathur
- The Bertarelli Foundation
- Fellow Participants